Sin Nombre Virus and Rodent Species Diversity: A Test of the Dilution and Amplification Hypotheses

نویسندگان

  • Christine A. Clay
  • Erin M. Lehmer
  • Stephen St. Jeor
  • M. Denise Dearing
چکیده

BACKGROUND Species diversity is proposed to greatly impact the prevalence of pathogens. Two predominant hypotheses, the "Dilution Effect" and the "Amplification Effect", predict divergent outcomes with respect to the impact of species diversity. The Dilution Effect predicts that pathogen prevalence will be negatively correlated with increased species diversity, while the Amplification Effect predicts that pathogen prevalence will be positively correlated with diversity. For many host-pathogen systems, the relationship between diversity and pathogen prevalence has not be empirically examined. METHODOLOGY/PRINCIPAL FINDINGS We tested the Dilution and Amplification Effect hypotheses by examining the prevalence of Sin Nombre virus (SNV) with respect to diversity of the nocturnal rodent community. SNV is directly transmitted primarily between deer mice (Peromyscus maniculatus). Using mark-recapture sampling in the Spring and Fall of 2003-2005, we measured SNV prevalence in deer mice at 16 landscape level sites (3.1 hectares each) that varied in rodent species diversity. We explored several mechanisms by which species diversity may affect SNV prevalence, including reduced host density, reduced host persistence, the presence of secondary reservoirs and community composition. We found a negative relationship between species diversity and SNV prevalence in deer mice, thereby supporting the Dilution Effect hypothesis. Deer mouse density and persistence were lower at sites with greater species diversity; however, only deer mouse persistence was positively correlated with SNV prevalence. Pinyon mice (P. truei) may serve as dilution agents, having a negative effect on prevalence, while kangaroo rats (Dipodomys ordii), may have a positive effect on the prevalence of SNV, perhaps through effects on deer mouse behavior. CONCLUSIONS/SIGNIFICANCE While previous studies on host-pathogen systems have found patterns of diversity consistent with either the Dilution or Amplification Effects, the mechanisms by which species diversity influences prevalence have not been investigated. Our study indicates that changes in host persistence, coupled with interspecific interactions, are important mechanisms through which diversity may influence patterns of pathogens. Our results reveal the complexity of rodent community interactions with respect to SNV dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased Host Species Diversity and Decreased Prevalence of Sin Nombre Virus

Emerging outbreaks of zoonotic diseases are affecting humans at an alarming rate. Until the ecological factors associated with zoonoses are better understood, disease emergence will continue. For Lyme disease, disease suppression has been demonstrated by a dilution effect, whereby increasing species diversity decreases disease prevalence in host populations. To test the dilution effect in anoth...

متن کامل

Genetic analysis of the diversity and origin of hantaviruses in Peromyscus leucopus mice in North America.

Nucleotide sequences were determined for the complete M genome segments of two distinct hantavirus genetic lineages which were detected in hantavirus antibody- and PCR-positive white-footed mice (Peromyscus leucopus) from Indiana and Oklahoma. Phylogenetic analyses indicated that although divergent from each other, the virus lineages in Indiana and Oklahoma were monophyletic and formed a newly ...

متن کامل

Serologic Survey of Oklahoma Rodents: Evidence for the Presence of a Hantavirus and an Arenavirus

We conducted a statewide survey of Oklahoma small mammals to test for antibodies against rodent-borne viral diseases. Four rodent species had antibody to Sin Nombre virus (SNV), the primary causative agent of hantavirus pulmonary syndrome (HPS), and two species had antibody to Whitewater Arroyo virus, an arenavirus associated with human fatalities. The rodent reservoirs for other HPScausing Nor...

متن کامل

Epizootiology of Sin Nombre and El Moro Canyon hantaviruses, southeastern Colorado, 1995-2000.

Sin Nombre virus (SNV) is an etiologic agent of hantavirus pulmonary syndrome. To better understand the natural history of this virus we studied population dynamics and temporal pattern of infection of its rodent hosts in southeastern Colorado (USA) from 1995 to 2000. We present evidence for the presence of two hantaviruses, SNV in deer mice (Peromyscus maniculatus) and El Moro Canyon virus in ...

متن کامل

Biogeographic and ecological regulation of disease: prevalence of Sin Nombre virus in island mice is related to island area, precipitation, and predator richness.

The relative roles of top-down and bottom-up forces in affecting disease prevalence in wild hosts is important for understanding disease dynamics and human disease risk. We found that the prevalence of Sin Nombre virus (SNV), the agent of a severe disease in humans (hantavirus pulmonary syndrome), in island deer mice from the eight California Channel Islands was greater with increased precipita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009